2018년 8월 21일 화요일

Estimator-based tensorflow training에 LMS 적용한 MNIST python code


이 MNIST training을 위한 tensorflow python code는 원래 /opt/DL/tensorflow/lib/python3.6/site-packages/tensorflow/examples/tutorials/layers/cnn_mnist.py 에 LMS를 적용한 것입니다.  보시다시피 hook를 사용하기 때문에 Estimator-based tensorflow training이고, 그에 따라 LMS가 적용되어 있습니다. 

LMS가 동작하는 message 확인이라든가, 다중 사용자를 위한 permission 등을 위한 부분도 있습니다만 그건 LMS와는 무관한 부분이고, 그 부분들은 빨간색으로 표시를 했습니다.  실제 LMS 구현을 위한 부분은 굵은 파란색으로 표시했습니다.  의외로 간단하다는 것을 보실 수 있습니다.  해당 부분들을 제거하면 그냥 LMS 없는 평범한 MNIST training code가 됩니다.

이 example code도 PowerAI 5.2를 설치하면 딸려오는 /opt/DL/tensorflow/lib/python3.6/site-packages/tensorflow/contrib/lms/examples/cnn_mnist_lms.py 을 그대로 가져다 놓은 것입니다.

실제 수행해보면 다음과 같이 동작하며, 12개의 tensor가 host 서버의 RAM으로 swap-out/in 되는 것을 보실 수 있습니다.

[bsyu@p57a22 ~]$ cd /opt/DL/tensorflow/lib/python3.6/site-packages/tensorflow/contrib/lms/examples

[bsyu@p57a22 examples]$ source /opt/DL/tensorflow/bin/tensorflow-activate

[bsyu@p57a22 examples]$ python cnn_mnist_lms.py
...
INFO:tensorflow:[LMS][1] Tensor sparse_softmax_cross_entropy_loss/Sum_1:0 will be placed on /cpu:0
INFO:tensorflow:[LMS][1] Operation: adam_optimizer/gradients/sparse_softmax_cross_entropy_loss/div_grad/RealDiv_1, order 23, type RealDiv
INFO:tensorflow:[LMS][1] Tensor adam_optimizer/gradients/sparse_softmax_cross_entropy_loss/div_grad/RealDiv_1:0 will be placed on /cpu:0
INFO:tensorflow:[LMS][1] Consuming op adam_optimizer/gradients/sparse_softmax_cross_entropy_loss/div_grad/RealDiv_2 (order 24) swaps in adam_optimizer/gradients/sparse_softmax_cross_entropy_loss/div_grad/RealDiv_1:0
INFO:tensorflow:[LMS][1] No control dependency op needed for swap in of op adam_optimizer/gradients/sparse_softmax_cross_entropy_loss/div_grad/RealDiv_1.
INFO:tensorflow:[LMS][0] Edited model is valid and logically equivalent to the original one
INFO:tensorflow:[LMS][0] Added 25 ops into the model
INFO:tensorflow:[LMS][0] Editing model for LMS, took: 88.58513832092285 ms
INFO:tensorflow:[LMS][0] 12 tensors will be swapped out(in) to(from) the host
INFO:tensorflow:Graph was finalized.
...
{'accuracy': 0.9702, 'loss': 0.098796368, 'global_step': 20000}



전체 code 내용은 아래를 보시기 바랍니다.

[bsyu@p57a22 examples]$ cat /opt/DL/tensorflow/lib/python3.6/site-packages/tensorflow/contrib/lms/examples/cnn_mnist_lms.py

#  Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Convolutional Neural Network Estimator for MNIST, built with tf.layers."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tempfile # Change not related to LMS
import tensorflow as tf

tf.logging.set_verbosity(tf.logging.INFO)  #LMS 기능과는 무관. LMS 메시지를 보기 위한 설정.


def cnn_model_fn(features, labels, mode):
  """Model function for CNN."""
  # Input Layer
  # Reshape X to 4-D tensor: [batch_size, width, height, channels]
  # MNIST images are 28x28 pixels, and have one color channel
  input_layer = tf.reshape(features["x"], [-1, 28, 28, 1])

  # Convolutional Layer #1
  # Computes 32 features using a 5x5 filter with ReLU activation.
  # Padding is added to preserve width and height.
  # Input Tensor Shape: [batch_size, 28, 28, 1]
  # Output Tensor Shape: [batch_size, 28, 28, 32]
  conv1 = tf.layers.conv2d(
      inputs=input_layer,
      filters=32,
      kernel_size=[5, 5],
      padding="same",
      activation=tf.nn.relu)

  # Pooling Layer #1
  # First max pooling layer with a 2x2 filter and stride of 2
  # Input Tensor Shape: [batch_size, 28, 28, 32]
  # Output Tensor Shape: [batch_size, 14, 14, 32]
  pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)

  # Convolutional Layer #2
  # Computes 64 features using a 5x5 filter.
  # Padding is added to preserve width and height.
  # Input Tensor Shape: [batch_size, 14, 14, 32]
  # Output Tensor Shape: [batch_size, 14, 14, 64]
  conv2 = tf.layers.conv2d(
      inputs=pool1,
      filters=64,
      kernel_size=[5, 5],
      padding="same",
      activation=tf.nn.relu)

  # Pooling Layer #2
  # Second max pooling layer with a 2x2 filter and stride of 2
  # Input Tensor Shape: [batch_size, 14, 14, 64]
  # Output Tensor Shape: [batch_size, 7, 7, 64]
  pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)

  # Flatten tensor into a batch of vectors
  # Input Tensor Shape: [batch_size, 7, 7, 64]
  # Output Tensor Shape: [batch_size, 7 * 7 * 64]
  pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])

  # Dense Layer
  # Densely connected layer with 1024 neurons
  # Input Tensor Shape: [batch_size, 7 * 7 * 64]
  # Output Tensor Shape: [batch_size, 1024]
  dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)

  # Add dropout operation; 0.6 probability that element will be kept
  dropout = tf.layers.dropout(
      inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN)

  # Logits layer
  # Input Tensor Shape: [batch_size, 1024]
  # Output Tensor Shape: [batch_size, 10]
  logits = tf.layers.dense(inputs=dropout, units=10)

  predictions = {
      # Generate predictions (for PREDICT and EVAL mode)
      "classes": tf.argmax(input=logits, axis=1),
      # Add `softmax_tensor` to the graph. It is used for PREDICT and by the
      # `logging_hook`.
      "probabilities": tf.nn.softmax(logits, name="softmax_tensor")
  }
  if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

  # Calculate Loss (for both TRAIN and EVAL modes)
  loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)

  # Configure the Training Op (for TRAIN mode)
  if mode == tf.estimator.ModeKeys.TRAIN:
    with tf.name_scope('adam_optimizer'):
      optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
      train_op = optimizer.minimize(
        loss=loss,
        global_step=tf.train.get_global_step())
    return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)

  # Add evaluation metrics (for EVAL mode)
  eval_metric_ops = {
      "accuracy": tf.metrics.accuracy(
          labels=labels, predictions=predictions["classes"])}
  return tf.estimator.EstimatorSpec(
      mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)


def main(unused_argv):
  # Load training and eval data
  mnist = tf.contrib.learn.datasets.load_dataset("mnist")
  train_data = mnist.train.images  # Returns np.array
  train_labels = np.asarray(mnist.train.labels, dtype=np.int32)
  eval_data = mnist.test.images  # Returns np.array
  eval_labels = np.asarray(mnist.test.labels, dtype=np.int32)

  # The graph_location changes are not related to LMS enablement
  # but rather allow multiple users to run the example without
  # having permission issues on temp directories.
  graph_location = tempfile.mkdtemp()
  print('Saving graph to: %s' % graph_location)

  # Create the Estimator
  mnist_classifier = tf.estimator.Estimator(
      model_fn=cnn_model_fn, model_dir=graph_location)

  # Set up logging for predictions
  # Log the values in the "Softmax" tensor with label "probabilities"
  tensors_to_log = {"probabilities": "softmax_tensor"}
  logging_hook = tf.train.LoggingTensorHook(
      tensors=tensors_to_log, every_n_iter=50)

  # Train the model
  train_input_fn = tf.estimator.inputs.numpy_input_fn(
      x={"x": train_data},
      y=train_labels,
      batch_size=100,
      num_epochs=None,
      shuffle=True)

  # Hook for Large Model Support
  from tensorflow.contrib.lms import LMSHook
  lms_hook = LMSHook({'adam_optimizer'}, lb=3, debug=True)

  mnist_classifier.train(
      input_fn=train_input_fn,
      steps=20000,
      hooks=[logging_hook, lms_hook])

  # Evaluate the model and print results
  eval_input_fn = tf.estimator.inputs.numpy_input_fn(
      x={"x": eval_data},
      y=eval_labels,
      num_epochs=1,
      shuffle=False)
  eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
  print(eval_results)


if __name__ == "__main__":
  tf.app.run()

댓글 없음:

댓글 쓰기