https://www.continuum.io/content/conda-support-raspberry-pi-2-and-power8-le
불행히도 ppc64le를 위한 link는 잘못 지정되어 있어 '404 Not Found'가 나옵니다만, 실제로는 link만 잘못된 것이고 아래와 같이 file은 실제로 존재합니다. 위의 것은 python version2 용이고, 아래 것은 python 3용입니다.
https://repo.continuum.io/miniconda/Miniconda2-4.3.14-Linux-ppc64le.sh
https://repo.continuum.io/miniconda/Miniconda3-4.3.14-Linux-ppc64le.sh
여기서는 python 3용을 설치해보겠습니다.
u0017496@sys-87250:~$ wget https://repo.continuum.io/miniconda/Miniconda3-4.3.14-Linux-ppc64le.sh
--2017-05-14 21:54:26-- https://repo.continuum.io/miniconda/Miniconda3-4.3.14-Linux-ppc64le.sh
Resolving repo.continuum.io (repo.continuum.io)... 104.16.19.10, 104.16.18.10, 2400:cb00:2048:1::6810:120a, ...
Connecting to repo.continuum.io (repo.continuum.io)|104.16.19.10|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 34765794 (33M) [application/x-sh]
Saving to: ‘Miniconda3-4.3.14-Linux-ppc64le.sh’
Miniconda3-4.3.14-Linux-pp 100%[=====================================>] 33.15M 10.2MB/s in 3.3s
2017-05-17 22:05:18 (10.0 MB/s) - ‘Miniconda3-4.3.14-Linux-ppc64le.sh’ saved [34765794/34765794]
u0017496@sys-87250:~$ chmod a+x Miniconda3-4.3.14-Linux-ppc64le.sh
이제 이 shell script를 수행하면 license 동의 등에 답을 해야 하며, 그 외에도 여러가지 입력 값을 넣어야 합니다. 대부분 그냥 enter를 누르시면 됩니다.
u0017496@sys-87250:~$ ./Miniconda3-4.3.14-Linux-ppc64le.sh
Welcome to Miniconda3 4.3.14 (by Continuum Analytics, Inc.)
In order to continue the installation process, please review the license
agreement.
Please, press ENTER to continue
>>>
(중략)
[/home/u0017496/miniconda3] >>>
PREFIX=/home/u0017496/miniconda3
installing: python-3.6.0-0 ...
installing: cffi-1.9.1-py36_0 ...
installing: conda-env-2.6.0-0 ...
installing: cryptography-1.7.1-py36_0 ...
installing: idna-2.2-py36_0 ...
installing: libffi-3.2.1-1 ...
installing: openssl-1.0.2k-1 ...
installing: pyasn1-0.2.3-py36_0 ...
installing: pycosat-0.6.2-py36_0 ...
installing: pycparser-2.17-py36_0 ...
installing: pyopenssl-16.2.0-py36_0 ...
installing: requests-2.13.0-py36_0 ...
installing: ruamel_yaml-0.11.14-py36_1 ...
installing: setuptools-27.2.0-py36_0 ...
installing: six-1.10.0-py36_0 ...
installing: sqlite-3.13.0-0 ...
installing: xz-5.2.2-1 ...
installing: yaml-0.1.6-0 ...
installing: zlib-1.2.8-3 ...
installing: conda-4.3.14-py36_0 ...
installing: pip-9.0.1-py36_1 ...
installing: wheel-0.29.0-py36_0 ...
Python 3.6.0 :: Continuum Analytics, Inc.
creating default environment...
installation finished.
Do you wish the installer to prepend the Miniconda3 install location
to PATH in your /home/u0017496/.bashrc ? [yes|no]
Prepending PATH=/home/u0017496/miniconda3/bin to PATH in /home/u0017496/.bashrc
A backup will be made to: /home/u0017496/.bashrc-miniconda3.bak
For this change to become active, you have to open a new terminal.
Thank you for installing Miniconda2!
Share your notebooks and packages on Anaconda Cloud!
Sign up for free: https://anaconda.org
이제 mini-conda를 설치했으니 conda 명령을 쓸 수 있어야 합니다. 그러나 보시다시피 conda가 없습니다.
u0017496@sys-87250:~$ which conda
이는 mini-conda 설치시 ~/.bashrc에 conda의 PATH 정보가 자동으로 들어가긴 했지만 .bashrc가 수행되지 않았기 때문에 그런 것입니다. 수행하시면 conda의 PATH가 잡혀 있는 것을 보실 수 있습니다.
u0017496@sys-87250:~$ . ~/.bashrc
u0017496@sys-87250:~$ which conda
/home/u0017496/miniconda3/bin/conda
이제 다음과 같이 ananconda에 포함된 python library들을 보실 수 있습니다.
u0017496@sys-87250:~$ conda list
# packages in environment at /home/u0017496/miniconda3:
#
cffi 1.9.1 py36_0
conda 4.3.14 py36_0
conda-env 2.6.0 0
cryptography 1.7.1 py36_0
idna 2.2 py36_0
libffi 3.2.1 1
openssl 1.0.2k 1
pip 9.0.1 py36_1
pyasn1 0.2.3 py36_0
pycosat 0.6.2 py36_0
pycparser 2.17 py36_0
pyopenssl 16.2.0 py36_0
python 3.6.0 0
requests 2.13.0 py36_0
ruamel_yaml 0.11.14 py36_1
setuptools 27.2.0 py36_0
six 1.10.0 py36_0
sqlite 3.13.0 0
wheel 0.29.0 py36_0
xz 5.2.2 1
yaml 0.1.6 0
zlib 1.2.8 3
현재까지 Continuum에서 빌드해놓은 package들을 모조리 다 설치하는 명령을 다음에 정리했습니다.
u0017496@sys-87250:~$ for i in `conda list | awk '{print $1}' | grep -v \#`
> do
> conda install $i
> done
(중략)
이제 위에서 설치한 패키지 중 pip가 제대로 설치되었는지 conda search로 확인해보겠습니다. 아래와 같이 * 표시가 된 것이 설치된 것입니다.
u0017496@sys-87250:~$ conda search pip
Fetching package metadata .........
pip 7.1.0 py27_0 defaults
7.1.0 py34_0 defaults
7.1.0 py27_1 defaults
7.1.0 py34_1 defaults
7.1.2 py27_0 defaults
7.1.2 py34_0 defaults
8.1.0 py27_0 defaults
8.1.0 py34_0 defaults
8.1.0 py35_0 defaults
8.1.2 py27_0 defaults
8.1.2 py34_0 defaults
8.1.2 py35_0 defaults
9.0.0 py27_0 defaults
9.0.0 py34_0 defaults
9.0.0 py35_0 defaults
9.0.1 py27_1 defaults
9.0.1 py35_1 defaults
* 9.0.1 py36_1 defaults
u0017496@sys-87250:~$ which pip
/home/u0017496/miniconda3/bin/pip
u0017496@sys-87250:~$ pip --version
pip 9.0.1 from /home/u0017496/miniconda3/lib/python3.6/site-packages (python 3.6)
이렇게 conda에서 제공하는 pip로 keras 2.0.4를 설치해보겠습니다.
u0017496@sys-87250:~/miniconda3/lib$ pip install keras==2.0.4
Collecting keras==2.0.4
Downloading Keras-2.0.4.tar.gz (199kB)
100% |████████████████████████████████| 204kB 3.1MB/s
Collecting theano (from keras==2.0.4)
Downloading Theano-0.9.0.tar.gz (3.1MB)
100% |████████████████████████████████| 3.1MB 310kB/s
Collecting pyyaml (from keras==2.0.4)
Downloading PyYAML-3.12.tar.gz (253kB)
100% |████████████████████████████████| 256kB 3.6MB/s
Requirement already satisfied: six in ./python3.6/site-packages (from keras==2.0.4)
Requirement already satisfied: numpy>=1.9.1 in ./python3.6/site-packages (from theano->keras==2.0.4)
Requirement already satisfied: scipy>=0.14 in ./python3.6/site-packages (from theano->keras==2.0.4)
Building wheels for collected packages: keras, theano, pyyaml
Running setup.py bdist_wheel for keras ... done
Stored in directory: /home/u0017496/.cache/pip/wheels/48/82/42/f06a8c03a8f95ada523a81ba723e89f059693e6ad868d09727
Running setup.py bdist_wheel for theano ... done
Stored in directory: /home/u0017496/.cache/pip/wheels/d5/5b/93/433299b86e3e9b25f0f600e4e4ebf18e38eb7534ea518eba13
Running setup.py bdist_wheel for pyyaml ... done
Stored in directory: /home/u0017496/.cache/pip/wheels/2c/f7/79/13f3a12cd723892437c0cfbde1230ab4d82947ff7b3839a4fc
Successfully built keras theano pyyaml
Installing collected packages: theano, pyyaml, keras
Successfully installed keras-2.0.4 pyyaml-3.12 theano-0.9.0
또 gensim 2.0.0과 KoNLPy를 설치해보겠습니다.
u0017496@sys-87250:~$ pip install gensim==2.0.0
Collecting gensim==2.0.0
Downloading gensim-2.0.0.tar.gz (14.1MB)
100% |████████████████████████████████| 14.2MB 88kB/s
Requirement already satisfied: numpy>=1.3 in ./miniconda3/lib/python3.6/site-packages (from gensim==2.0.0)
Requirement already satisfied: scipy>=0.7.0 in ./miniconda3/lib/python3.6/site-packages (from gensim==2.0.0)
Requirement already satisfied: six>=1.5.0 in ./miniconda3/lib/python3.6/site-packages (from gensim==2.0.0)
Requirement already satisfied: smart_open>=1.2.1 in ./miniconda3/lib/python3.6/site-packages (from gensim==2.0.0)
Requirement already satisfied: boto>=2.32 in ./miniconda3/lib/python3.6/site-packages (from smart_open>=1.2.1->gensim==2.0.0)
Requirement already satisfied: bz2file in ./miniconda3/lib/python3.6/site-packages (from smart_open>=1.2.1->gensim==2.0.0)
Requirement already satisfied: requests in ./miniconda3/lib/python3.6/site-packages (from smart_open>=1.2.1->gensim==2.0.0)
Building wheels for collected packages: gensim
Running setup.py bdist_wheel for gensim ... done
Stored in directory: /home/u0017496/.cache/pip/wheels/e9/5f/e7/4ff23a3fe4b181b44f37eed5602f179c1cc92a0a34f337e745
Successfully built gensim
Installing collected packages: gensim
Found existing installation: gensim 1.0.1
Uninstalling gensim-1.0.1:
Successfully uninstalled gensim-1.0.1
Successfully installed gensim-2.0.0
u0017496@sys-87250:~$ pip install konlpy
Collecting konlpy
Downloading konlpy-0.4.4-py2.py3-none-any.whl (22.5MB)
100% |████████████████████████████████| 22.5MB 57kB/s
Installing collected packages: konlpy
Successfully installed konlpy-0.4.4
이제 conda 명령을 통해 추가로 numpy와 matplotlib, scipy와 scikit-learn를 설치해보겠습니다. matplotlib의 prerequisite이 numpy이고, scikit-learn의 prerequisite이 scipy라서 그것들은 자동으로 설치되니까, 실제로는 conda 명령은 두번만 쓰면 됩니다.
u0017496@sys-87250:~$ conda install matplotlib
Fetching package metadata .........
Solving package specifications: .
Package plan for installation in environment /home/u0017496/miniconda3:
The following NEW packages will be INSTALLED:
cycler: 0.10.0-py36_0
freetype: 2.5.5-2
libpng: 1.6.27-0
matplotlib: 2.0.2-np112py36_0
numpy: 1.12.1-py36_0
openblas: 0.2.19-0
python-dateutil: 2.6.0-py36_0
pytz: 2017.2-py36_0
Proceed ([y]/n)? y
openblas-0.2.1 100% |###########################################################| Time: 0:00:00 10.21 MB/s
libpng-1.6.27- 100% |###########################################################| Time: 0:00:00 12.75 MB/s
freetype-2.5.5 100% |###########################################################| Time: 0:00:00 10.53 MB/s
numpy-1.12.1-p 100% |###########################################################| Time: 0:00:00 15.12 MB/s
pytz-2017.2-py 100% |###########################################################| Time: 0:00:00 13.25 MB/s
cycler-0.10.0- 100% |###########################################################| Time: 0:00:00 15.61 MB/s
python-dateuti 100% |###########################################################| Time: 0:00:00 6.43 MB/s
matplotlib-2.0 100% |###########################################################| Time: 0:00:00 14.62 MB/s
u0017496@sys-87250:~$ conda install scikit-learn
Fetching package metadata .........
Solving package specifications: .
Package plan for installation in environment /home/u0017496/miniconda3:
The following NEW packages will be INSTALLED:
scikit-learn: 0.18.1-np112py36_1
scipy: 0.19.0-np112py36_0
Proceed ([y]/n)? y
scipy-0.19.0-n 100% |###########################################################| Time: 0:00:02 14.75 MB/s
scikit-learn-0 100% |###########################################################| Time: 0:00:00 15.56 MB/s
이렇게 설치된 것들은 아래와 같이 /home/u0017496/miniconda3/lib/python3.6/site-packages 에 들어갑니다.
u0017496@sys-87250:~$ ls /home/u0017496/miniconda3/lib/python3.6/site-packages/
asn1crypto mpl_toolkits python_dateutil-2.6.0-py3.6.egg-info
asn1crypto-0.22.0-py3.6.egg-info numpy-1.12.1.dist-info pytz
cffi OpenSSL pytz-2017.2-py3.6.egg-info
cffi-1.10.0-py3.6.egg-info packaging README.txt
_cffi_backend.so packaging-16.8-py3.6.egg-info requests
conda pip requests-2.14.2-py3.6.egg-info
conda-4.3.18-py3.6.egg-info pip-9.0.1-py3.6.egg-info ruamel_yaml
conda_env pyasn1 scikit_learn-0.18.1-py3.6.egg-info
cryptography pyasn1-0.2.3-py3.6.egg-info scipy
cryptography-1.8.1-py3.6.egg-info __pycache__ scipy-0.19.0-py3.6.egg-info
cycler-0.10.0-py3.6.egg-info pycosat-0.6.2-py3.6.egg-info setuptools-27.2.0-py3.6.egg
cycler.py pycosat.cpython-36m-powerpc64le-linux-gnu.so setuptools.pth
dateutil pycparser six-1.10.0-py3.6.egg-info
easy-install.pth pycparser-2.17-py3.6.egg-info six.py
idna pylab.py sklearn
idna-2.5-py3.6.egg-info pyOpenSSL-17.0.0-py3.6.egg-info test_pycosat.py
matplotlib pyparsing-2.1.4-py3.6.egg-info wheel
matplotlib-2.0.2-py3.6.egg-info pyparsing.py wheel-0.29.0-py3.6.egg-info
따라서 이것들을 사용하기 위해서는 PYTHONPATH는 다음과 같이 설정하시면 됩니다.
u0017496@sys-87250:~$ export PYTHONPATH=/home/u0017496/miniconda3/lib/python3.6/site-packages:$PYTHONPATH
이제 여기에 (PowerAI에 포함된 tensorflow 말고) conda로 bazel, tensorflow 및 tensorflow-gpu도 설치해보겠습니다.
u0017496@sys-87250:~$ conda install bazel
Fetching package metadata .........
Solving package specifications: .
Package plan for installation in environment /home/u0017496/miniconda3:
The following NEW packages will be INSTALLED:
bazel: 0.4.5-0
Proceed ([y]/n)? y
bazel-0.4.5-0. 100% |#############################################| Time: 0:00:09 13.37 MB/s
u0017496@sys-87250:~$ conda install tensorflow
Fetching package metadata .........
Solving package specifications: .
Package plan for installation in environment /home/u0017496/miniconda3:
The following NEW packages will be INSTALLED:
libprotobuf: 3.2.0-0
protobuf: 3.2.0-py36_0
tensorflow: 1.1.0-np112py36_0
werkzeug: 0.12.2-py36_0
Proceed ([y]/n)? y
libprotobuf-3. 100% |#############################################| Time: 0:00:00 13.84 MB/s
werkzeug-0.12. 100% |#############################################| Time: 0:00:00 18.67 MB/s
protobuf-3.2.0 100% |#############################################| Time: 0:00:00 10.39 MB/s
tensorflow-1.1 100% |#############################################| Time: 0:00:01 15.16 MB/s
u0017496@sys-87250:~$ conda install tensorflow-gpu
Fetching package metadata .........
Solving package specifications: .
Package plan for installation in environment /home/u0017496/miniconda3:
The following NEW packages will be INSTALLED:
cudatoolkit: 8.0-0
cudnn: 6.0.21-0
tensorflow-gpu: 1.1.0-np112py36_0
Proceed ([y]/n)? y
cudatoolkit-8. 100% |#############################################| Time: 0:00:29 11.24 MB/s
cudnn-6.0.21-0 100% |#############################################| Time: 0:00:11 15.97 MB/s
tensorflow-gpu 100% |#############################################| Time: 0:00:06 14.27 MB/s
conda list 명령으로 보면 다음과 같은 것들이 설치된 것을 보실 수 있습니다.
u0017496@sys-87250:~$ conda list
# packages in environment at /home/u0017496/miniconda3:
#
asn1crypto 0.22.0 py36_0
bazel 0.4.5 0
boto 2.46.1 py36_0
bz2file 0.98 py36_0
cffi 1.10.0 py36_0
conda 4.3.18 py36_0
conda-env 2.6.0 0
cryptography 1.8.1 py36_0
cudatoolkit 8.0 0
cudnn 6.0.21 0
cycler 0.10.0 py36_0
freetype 2.5.5 2
gensim 1.0.1 np112py36_0
gensim 2.0.0 <pip>
idna 2.5 py36_0
Keras 2.0.4 <pip>
konlpy 0.4.4 <pip>
libffi 3.2.1 1
libpng 1.6.27 0
libprotobuf 3.2.0 0
matplotlib 2.0.2 np112py36_0
numpy 1.12.1 <pip>
numpy 1.12.1 py36_0
openblas 0.2.19 0
openssl 1.0.2k 2
packaging 16.8 py36_0
pip 9.0.1 py36_1
protobuf 3.2.0 py36_0
pyasn1 0.2.3 py36_0
pycosat 0.6.2 py36_0
pycparser 2.17 py36_0
pyopenssl 17.0.0 py36_0
pyparsing 2.1.4 py36_0
python 3.6.1 2
python-dateutil 2.6.0 py36_0
pytz 2017.2 py36_0
PyYAML 3.12 <pip>
requests 2.14.2 py36_0
ruamel_yaml 0.11.14 py36_1
scikit-learn 0.18.1 np112py36_1
scipy 0.19.0 np112py36_0
setuptools 27.2.0 py36_0
six 1.10.0 py36_0
smart_open 1.5.2 py36_0
sqlite 3.13.0 0
tensorflow 1.1.0 np112py36_0
tensorflow-gpu 1.1.0 np112py36_0
Theano 0.9.0 <pip>
werkzeug 0.12.2 py36_0
wheel 0.29.0 py36_0
xz 5.2.2 1
yaml 0.1.6 0
zlib 1.2.8 3
설치하는 김에, 이렇게 conda로 설치한 tensorflow를 이용하여 inception v3 model을 training 해보겠습니다. 다음 순서대로 따라 하시면 됩니다.
u0017496@sys-87250:~/inception$ pwd
/home/u0017496/inception
u0017496@sys-87250:~/inception$ export INCEPTION_DIR=/home/u0017496/inception
u0017496@sys-87250:~/inception$ curl -O http://download.tensorflow.org/models/image/imagenet/inception-v3-2016-03-01.tar.gz
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 380M 100 380M 0 0 5918k 0 0:01:05 0:01:05 --:--:-- 4233k
u0017496@sys-87250:~/inception$ tar -xvf inception-v3-2016-03-01.tar.gz
inception-v3/
inception-v3/checkpoint
inception-v3/README.txt
inception-v3/model.ckpt-157585
u0017496@sys-87250:~/inception$ git clone https://github.com/tensorflow/models.git
Cloning into 'models'...
remote: Counting objects: 4703, done.
remote: Compressing objects: 100% (43/43), done.
remote: Total 4703 (delta 17), reused 31 (delta 11), pack-reused 4649
Receiving objects: 100% (4703/4703), 153.34 MiB | 5.62 MiB/s, done.
Resolving deltas: 100% (2374/2374), done.
Checking connectivity... done.
u0017496@sys-87250:~/inception/models/inception$ export FLOWERS_DIR=/home/u0017496/inception/models/inception
u0017496@sys-87250:~/inception/models/inception$ mkdir -p $FLOWERS_DIR/data
u0017496@sys-87250:~/inception/models/inception$ which bazel
/home/u0017496/miniconda3/bin/bazel
u0017496@sys-87250:~/inception/models/inception$ bazel build inception/download_and_preprocess_flowers
Extracting Bazel installation...
....................
INFO: Found 1 target...
Target //inception:download_and_preprocess_flowers up-to-date:
bazel-bin/inception/download_and_preprocess_flowers
INFO: Elapsed time: 6.943s, Critical Path: 0.05s
u0017496@sys-87250:~/inception/models/inception$ export TEST_TMPDIR=/home/u0017496/.cache
u0017496@sys-87250:~/inception/models/inception$ bazel build inception/download_and_preprocess_flowers
INFO: $TEST_TMPDIR defined: output root default is '/home/u0017496/.cache'.
Extracting Bazel installation...
.............
INFO: Found 1 target...
Target //inception:download_and_preprocess_flowers up-to-date:
bazel-bin/inception/download_and_preprocess_flowers
INFO: Elapsed time: 4.867s, Critical Path: 0.03s
u0017496@sys-87250:~/inception/models/inception$ bazel-bin/inception/download_and_preprocess_flowers $FLOWERS_DIR/data
Downloading flower data set.
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 218M 100 218M 0 0 9372k 0 0:00:23 0:00:23 --:--:-- 10.1M
(중략)
Found 3170 JPEG files across 5 labels inside /home/u0017496/inception/models/inception/data/raw-data/train.
Launching 2 threads for spacings: [[0, 1585], [1585, 3170]]
2017-05-19 05:33:44.191446 [thread 0]: Processed 1000 of 1585 images in thread batch.
2017-05-19 05:33:44.213856 [thread 1]: Processed 1000 of 1585 images in thread batch.
2017-05-19 05:33:54.902070 [thread 1]: Wrote 1585 images to /home/u0017496/inception/models/inception/data/train-00001-of-00002
2017-05-19 05:33:54.902172 [thread 1]: Wrote 1585 images to 1585 shards.
2017-05-19 05:33:54.911283 [thread 0]: Wrote 1585 images to /home/u0017496/inception/models/inception/data/train-00000-of-00002
2017-05-19 05:33:54.911360 [thread 0]: Wrote 1585 images to 1585 shards.
2017-05-19 05:33:55.171141: Finished writing all 3170 images in data set.
아래에서 보시다시피 이 inception v3는 꽃 사진을 분류하는 neural network입니다.
u0017496@sys-87250:~/inception/models/inception$ du -sm data/raw-data/train/*
29 data/raw-data/train/daisy
44 data/raw-data/train/dandelion
1 data/raw-data/train/LICENSE.txt
33 data/raw-data/train/roses
47 data/raw-data/train/sunflowers
48 data/raw-data/train/tulips
u0017496@sys-87250:~/inception/models/inception$ bazel build inception/flowers_train
INFO: $TEST_TMPDIR defined: output root default is '/home/u0017496/.cache'.
............................
INFO: Found 1 target...
Target //inception:flowers_train up-to-date:
bazel-bin/inception/flowers_train
INFO: Elapsed time: 6.502s, Critical Path: 0.03s
이제 비로소 inception v3의 training 준비가 끝났습니다. 이제 다음 명령으로 training을 시작합니다.
u0017496@sys-87250:~/inception/models/inception$ time bazel-bin/inception/flowers_train --train_dir=$FLOWERS_DIR/train --data_dir=$FLOWERS_DIR/data --pretrained_model_checkpoint_path=$INCEPTION_DIR/inception-v3/model.ckpt-157585 --fine_tune=True --initial_learning_rate=0.001 -input_queue_memory_factor=1 --max_steps=50 --num_gpus 1 --batch_size=32
NVIDIA: no NVIDIA devices found
2017-05-19 05:41:03.740213: E tensorflow/stream_executor/cuda/cuda_driver.cc:405] failed call to cuInit: CUDA_ERROR_UNKNOWN
2017-05-19 05:41:03.740670: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:145] kernel driver does not appear to be running on this host (sys-87250): /proc/driver/nvidia/version does not exist
2017-05-19 05:41:51.947244: Pre-trained model restored from /home/u0017496/inception/inception-v3/model.ckpt-157585
2017-05-19 05:47:22.023602: step 0, loss = 2.79 (0.2 examples/sec; 182.713 sec/batch)
2017-05-19 06:05:58.942671: step 10, loss = 2.53 (0.4 examples/sec; 78.882 sec/batch)
2017-05-19 06:19:26.875533: step 20, loss = 2.40 (0.4 examples/sec; 82.410 sec/batch)
2017-05-19 06:33:10.333275: step 30, loss = 2.20 (0.4 examples/sec; 77.844 sec/batch)
2017-05-19 06:48:27.688993: step 40, loss = 2.24 (0.3 examples/sec; 96.148 sec/batch)
real 84m30.882s
user 135m20.864s
sys 2m30.832s
이제 와서 고백하지만 제가 설치 demo를 보여드린 이 서버는 사실 GPU가 달려 있지 않은 POWER8 서버입니다. GPU가 없는 경우 CPU를 이용하게 되는데, 그런 경우 이 training의 완료는 보시다시피 매우, 매우 오래 걸립니다. 저 output을 보면 초당 example 0.4개 처리로 나옵니다만, P100을 이용하는 경우 (GPU 개수 및 batch size에 따라) 초당 50개~200개 단위로 처리가 됩니다.
아래는 전에 PowerAI를 설치한 Minsky 서버에서 수행했던 inception v3의 결과 log 일부입니다.
2017-05-16 03:48:46.352210: Pre-trained model restored from /gpfs/gpfs_gl4_16mb/b7p088za/inception-v3/model.ckpt-157585
2017-05-16 03:52:44.322381: step 0, loss = 2.72 (17.6 examples/sec; 21.830 sec/batch)
2017-05-16 03:55:29.550791: step 10, loss = 2.57 (213.6 examples/sec; 1.797 sec/batch)
2017-05-16 03:55:47.619990: step 20, loss = 2.35 (212.1 examples/sec; 1.810 sec/batch)
2017-05-16 03:56:05.953991: step 30, loss = 2.17 (206.6 examples/sec; 1.859 sec/batch)
2017-05-16 03:56:24.306742: step 40, loss = 1.98 (209.4 examples/sec; 1.834 sec/batch)
2017-05-16 03:56:42.490063: step 50, loss = 1.92 (217.8 examples/sec; 1.763 sec/batch)
2017-05-16 03:57:00.444537: step 60, loss = 1.67 (216.6 examples/sec; 1.773 sec/batch)
2017-05-16 03:57:18.366941: step 70, loss = 1.58 (212.7 examples/sec; 1.806 sec/batch)
2017-05-16 03:57:36.467837: step 80, loss = 1.55 (213.6 examples/sec; 1.798 sec/batch)
안녕하세요
답글삭제해당 자료를 기반으로 x86에서 테스트하여 Posting하였습니다. 혹시 원하지 않으시면 다른 내용으로 변경하겠사오니, 변경을 원하시면 말씀 부탁드립니다.
https://sysnet4admin.blogspot.kr/2017/06/dmdl-x86-anaconda-tensorflow.html#.WTfFy2iLQuU
감사합니다.
작성자가 댓글을 삭제했습니다.
답글삭제